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Abstract. The formulation of the phase-field problem due to Wheeler et al. [Physica D 66, 243 (1993)]
has been adopted and extended as a tool for solidification research by many groups around the World.
However, an intrinsic problem of this model is that it couples two physically distinct anisotropies, those
associated with the surface energy of the solid-liquid interface and attachment kinetics, into a single
anisotropy parameter. In this paper we present a simple extension to the Wheeler model in which we show
that introducing a complex form of the anisotropy function allows these two physical parameters to be
decoupled.

PACS. 81.10.-h Methods of crystal growth; physics of crystal growth – 81.30.Fb Solidification – 64.70.Dv
Solid-liquid transitions

Introduction

One of the most fundamental and all pervasive microstruc-
tures produced during the solidification of metals is the
dendrite. The dendrite is a prime example of a pattern
forming system where complex morphologies arise from
initially homogeneous conditions due to the highly non-
linear response of the controlling system.

One of the central advances in the ability to predict
non steady-state dendritic microstructures has been the
advent of phase-field modelling [1,2]. The basis of the tech-
nique is the definition of a phase variable (say φ) the value
of which describes the local phase of the material. By as-
suming that the interface between phases is diffuse, with
a finite width δ, φ is made continuous and the govern-
ing equations can be written in differential form. In the
asymptotic limit that δ → 0 the sharp interface equa-
tions must be recovered, which for pure thermal growth
would be

∂T

∂t
= D∇2T (1)

cD[n̂(∇T )l − n̂(∇T )s] = −Lvn (2)

Ti = Tm − L

c
dK − βvn (3)

where D is the thermal diffusivity, assumed equal in the
solid and liquid states, L and c are the latent and specific
heats per unit volume respectively, n̂ is the outward point-
ing unit normal to the interface, vn is the local interface
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velocity along n̂, Tm is the equilibrium melting tempera-
ture of the solid and the subscripts l and s relate to the
solid and liquid states respectively. Equation (2) is sim-
ply the balance of heat fluxes across the interface, while
equation (3) is the moving interface version of the Gibbs-
Thomson equation with local interface temperature, Ti,
and local curvature, K. Here, β, is a kinetic coefficient
and d is the capillary length, which is given by

d =
(σ + σ′′)Tmc

L2
(4)

where σ(θ) the interfacial energy between the solid and
liquid phases, θ is the angle between n̂ and the principal
growth direction and differentiation is with respect to θ.

For the case in which both σ and β are isotropic these
equations have no steady state solutions. Anisotropy can
be introduced by letting

d = d(θ) = d0(1 − γd cos kθ) (5)

and additionally sometimes

β = β(θ) = β0[1 − γk cos k(θ + θ0)]. (6)

Here, γd and γk are the strength of the capillary and ki-
netic anisotropies respectively, k is a mode number, which
for growth in a cubic metal will be 4 and θ0 is the off-
set between the directions of the kinetic and capillary
anisotropies. The steady-state problem has been studied
extensively by the application of boundary integral meth-
ods [3–5], often referred to as microscopic solvability the-
ory in this context.
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The principal prediction of solvability theory is that
capillary forces break the Ivantsov degeneracy via the re-
lationship

R2V =
2Ddo

σ∗ (7)

where σ∗ is the anisotropy dependent eigenvalue for the
problem, which for small Peclet numbers is found to vary
as σ∗(γd) ∝ γ

7/4
d in the limit p, γd → 0, where p is the

Peclet number for growth

p =
V R

2D
(8)

with V and R being the growth velocity and radius of
curvature at the tip.

Phase-field is important in the study of the time de-
pendent problem. There are however, a variety of formu-
lations of the technique, even within the restricted case
of a single phase solid growing into its pure undercooled
melt [6–10].

The anisotropy required to produce dendritic growth is
introduced by making δ and in some cases also a character-
istic time-scale, τ , functions of θ [8–10]. Where there is just
a single anisotropy parameter based on the length scale δ,
this effectively couples the two physically independent
anisotropies relating to surface energy and atomic attach-
ment kinetics. Karma and Rappel [11] have demonstrated
that a judicious choice for τ(θ) allows the magnitudes of
γd and γk to be decoupled. However, other formulations
of the phase-field technique have remained popular and,
unlike some formulations, the Karma and Rappel model
has only recently been extended to solutally based sys-
tems. Moreover, the range of types of phase diagram to
which it can be applied is more limited than some other
formulations of the phase-field problem.

In this paper we present an extension to a formulation
of the phase-field technique due to Wang et al. [12] and
subsequently developed for dendritic growth by Wheeler
et al. [10]. In particular we introduce a complex form
of the anisotropy as a route to decoupling γd and γk.
The Wheeler model has been taken up extensively by
workers in a number of areas. Recent applications of this
model include the study of dendritic shapes at high un-
dercoolings [13] and a model for spontaneous grain refine-
ment [14]. Developments of the basic methodology laid
out by Wang et al. include, but are not limited to, an ex-
tension to alloy solidification [15], solution with adaptive
meshing [16], the inclusion of electric currents through the
solidifying material [17] and constrained dendritic growth
within a channel [18].

Development of the computational model

The basis of the Wheeler model is a Landau-Ginzberg free
energy functional

F =
∫

Ω

[
s(e, φ) + 1

2ε2(∇φ)2
]
dΩ (9)

where s(e, φ) is an entropy density, e is the internal en-
ergy density and ε is a constant. Here, φ ≡ 1 in the liquid
and 0 in the solid. Following Wheeler et al. [10] we define
reference length and time scales w and w2/D, and a di-
mensionless temperature u (T = Tm + u∆T ) giving the
transport equation as

∂u

∂τ
+

30φ2

∆
(1 − 2φ + φ2)

∂φ

∂τ
= ∇2u. (10)

The second term on the left-hand side of equation (10)
represents the latent heat associated with the change of
state, with ∆ being the dimensionless undercooling

∆ =
c∆T

L
=

c(Tm − T )
L

. (11)

The anisotropic phase equation is given by

ε̄2

m

∂φ

∂τ
= φ(1 − φ)

[
φ − 1

2 + 30ε̄α∆uφ(1 − φ)
]

− ε̄2 ∂

∂x

(
η(θ)η′(θ)

∂φ

∂y

)
+ ε̄2 ∂

∂y

(
η(θ)η′(θ)

∂φ

∂x

)

+ ε̄2∇ · (η2(θ)∇φ
)

(12)

where the quantities in equation (12) are given by Wheeler
et al. [10] as

α =
√

2wL2

12cσTm
(13)

m =
σTm

β0DL
(14)

ε̄ =
δ

w
. (15)

and η is some, as yet unspecified, function of θ which in-
troduces an anisotropy into δ.

It can be shown that, in the limit δ → 0, the interface
temperature is given by [10]

u = − d0

c∆

(
[η(θ) + η′′(θ)]K +

v̄n

m[η(θ)]2

)
(16)

where v̄n is the dimensionless interface velocity.
The standard form of the function η and indeed the

only one considered by Wheeler is

η(θ) = 1 + γ cos kθ. (17)

When substituted into equation (16) and expanded to first
order this gives

u = − d0

c∆
[1 − (k2 − 1)γ cos kθ]K − d0

mc∆
[1 − 2γ cos kθ]v̄n

(18)
which is of the form of equation (3) with β0 = d0/mc∆.
Moreover the anisotropies are of the form given by equa-
tions (5) and (6) provided γd/γk ≈ (k2−1)/2. That is the
ratio of the capillary to kinetic anisotropy is fixed.

However, the derivation of the interface temperature
in the asymptotic limit of δ → 0 is independent of the



A.M. Mullis: An extension to the Wheeler phase-field model 379

form of η. Consequently, we will now consider a form for
η that allows the kinetic and capillary anisotropies to be
decoupled. Specifically, we will write

η(θ) = 1 + γr cos krθ + iγi cos ki(θ + θi) (19)

where γr, γi, kr and ki are respectively the anisotropies
and mode numbers for the real and imaginary parts of η.
Clearly, at the end of the computation both the inter-
face width, δ, and the phase variable φ must be real, as
must all the other physical variables such as the interface
temperature. The complex form of η is introduced purely
as a device to decouple the magnitudes of the capillary
and kinetic anisotropies. Consequently, at the end of each
time step the incremental change in φ, is forced to be real
by discarding the imaginary component of the right-hand
side of equation (12).

From equation (16) it can be seen that the capillary
terms are of order 1 in η, while the kinetic term is or
order 2. Consequently, introducing a complex form of η
will leave the capillary term unaltered but will affect the
kinetic term. That is, γd is a function of γr only, while
γk is a function of both γr and γi, so that decoupling of
the capillary and kinetic anisotropies may be achieved. By
substituting the complex form of η into equation (20) and
taking the real component, we obtain the kinetic function
β(θ) as

β(θ) =
(

d0

mc∆

)
Ar(θ)

A2
r(θ) + A2

i (θ)
(20)

where Ar and Ai are the real and imaginary components
of η2 respectively.

The system of differential equations represented by
equations (10) and (12) can be solved using a standard
numerical techniques. In the work reported here we have
used a semi-implicit ADI finite difference scheme for the
transport equation, while the phase equation is solved us-
ing an explicit forward Euler scheme.

Validation and properties of the model

Upon expanding equation (20) it can be seen that the
term cos ki(θ + θi) always appears raised to the power 2
or above in β(θ). Consequently, in order to achieve four-
fold symmetry in γk, we set ki = 2 and this is the only
value of ki that has been considered. A straightforward
analysis reveals that assigning θi = 0 allows the magni-
tude of γk to be increased above the value of 2γ found in
the standard Wheeler model, while retaining the default
direction. Assigning θi = π/4 allows the magnitude of γk

to be reduced below 2γ, including allowing γk to take neg-
ative values, wherein the maximum in β(θ) is offset by 45◦
from the maximum in d(θ). Other values of θi, which allow
a complete decoupling of β(θ) and d(θ) in both magnitude
and direction are admissible, and are discussed briefly at
the end of this section.

Validation of the phase-field model has been conducted
against the front tracking model of Ihle [19], in which it
is also possible to independently vary γd and γk. This

in turn has been compared with the predictions of solv-
ability theory [20,21]. For the purposes of comparison we
have adopted the model parameters used by Ihle, namely
∆ = 0.45, d0 = 0.03097 (dimensionless) and β0 = 1.5485
(dimensionless), where our characteristic length scale, w,
and diffusivity, D, (and hence time scale, τ) have been
chosen so as to give the same non-dimensionalisation as
that employed by Ihle. Two cases have been compared
with the work of Ihle, (γd = 0.1, γk = 0.1) and (γd = 0.0,
γk = 0.1). Unfortunately, however, Ihle uses the asymmet-
ric diffusivity approach (Ds = 0), whereas we employ the
symmetric diffusivity approximation (Ds = Dl), the latter
being more appropriate to thermal growth, which is the
basis of the Wheeler model. Here Ds is the diffusivity in
the solid and Dl the diffusivity in the liquid. For this rea-
son it is not possible to compare the dendrite tip radii or
velocities predicted by the two model directly as the op-
erating point parameter, σ∗, is known to be a function of
the ratio Ds/Dl [22,23]. However, we can still compare the
computed Peclet numbers obtained from the two models
for the growth process.

For the growth of an isothermal parabolic plate into
an isotropic undercooled melt the analytical solution gives

∆ =
√

πpoe
poerfc(

√
po). (21)

With ∆ = 0.45 the inverse solution to equation (21)
yields po = 0.1353. Our phase-field model yields values
of p = 0.478po in the case of γd = 0.1, γk = 0.1 and
p = 0.522po in the case of γd = 0.0, γk = 0.1. By way
of comparison the model of Ihle gives p = 0.468po and
p = 0.516po respectively for these two cases. Given the
different computational methodologies employed by these
two models we consider that this represents very good
agreement. It will also be apparent from the above discus-
sion that the model is capable of simulating fully kinetic
dendrites, that is where the dendrite morphology is sta-
bilised solely by the kinetic anisotropy (γd = 0).

Figure 1 shows a sequence of simulations in which the
magnitude of γk has been varied at fixed γd, such that a
competition between the capillary and kinetic anisotropy
arises. Given appropriate choices for γd and γk a simi-
lar sequence of morphologies can be produced by varying
∆ at fixed anisotropy, although here we have chosen to
vary the anisotropy. In each frame the capillary anisotropy,
with magnitude γd = 0.30 (corresponding to a surface en-
ergy anisotropy of 0.02 for a four-fold symmetric system),
is directed towards the corners of the bounding box and
the kinetic anisotropy towards its sides. With the excep-
tion of γk all the computational parameters are identical
across all the simulations. The thermal Peclet number for
growth of the dendrites is p = 0.14. No random noise is in-
troduced into the simulations and consequently dendritic
side-branching has been artificially suppressed. This has
been done to facilitate detailed investigation of the tip
morphology. At γk = 0 (a) there are four well-defined
primary dendrite arms directed along the capillary direc-
tion, no other feature are apparent. As γk is increased (b)
small doublon like features appear directed along the ki-
netic direction, although well-developed primary dendrites
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Fig. 1. Sequence of images illustrating the effect of the compe-
tition between capillary anisotropy (directed towards the cor-
ners of the box) and kinetic anisotropy (directed towards the
sides of the box). In all the simulations shown the capillary
anisotropy is γd = 0.30. The kinetic anisotropy is (a) γk = 0.00,
(b) γk = 0.08, (c) γk = 0.14, (d) γk = 0.18, (e) γk = 0.22 and
(f) γk = 0.30. Note that the competition between differently
directed anisotropies leads to the formation of structures that
are normally associated with low anisotropy systems, such as
doublons and dendritic seaweed.

are still apparent along the capillary direction. Further
increasing γk tends to promote the growth along the di-
rection of the kinetic anisotropy, although the doublon
type morphology is now replaced by one more charac-
teristic of ‘dendritic seaweed’ (c). The capillary dendrites
retain their approximately parabolic tip-shape up to the
point where the kinetic and capillary growth rates are ap-
proximately equal. There then follows a small range in
γk in which doublon like growth is possible along both
the kinetic and capillary directions (d), although this is
morphology clearly still favours the kinetic direction. Fi-
nally, we see the development of kinetic dendrites (e) with
doublon like features along the capillary direction, which
eventually reduce in size (f) and disappears with further
increases in γk. For completeness Figure 2 shows the val-
ues of γi used to generate values of γk up to 0.3. Note
however, that because γk depend upon both γr and γi,
the values of γi shown in Figure 2 apply only to the case
in which the value of γr is fixed at 0.02.

Finally we deal with the case in which we require
an arbitrary offset between the capillary and kinetic
anisotropies that is, θ0 in equation (6) does not take the
values 0 or π/4. This can be accommodated by allowing
θi to take values other than 0 or π/4, although because of
the non-linear dependence of β(θ) on Ar and Ai it will not
in general be the case that θ0 = θi. However, solving equa-
tion (20) for self-consistent values of γi and θi which yield
the desired values of γk and θ0 is a relatively straightfor-
ward matter using an iterative least squares algorithm. As
an example, say we wish to construct a model in which
γd = 0.30 and γk = 0.12, with the additional require-
ment that the maxima should be offset from each other by
θ0 = π/8(22.5◦). As γd depends only upon γr, we require

Fig. 2. Relationship between the complex anisotropy parame-
ter γi used in the phase-field model and the kinetic anisotropy
it generates, γk, for the case in which γr = 0.02 and θi = 0.

that γr = 0.02, while γi = 0.2906 and θi = 0.4650 rad give
the required values of γk and θ0 (≈ 0.3927 rad).

An application of the model - dendrite tip
shape

Having developed a model in which γd and γk can be var-
ied independently, we have proceed to search for general
scaling laws relating γ to the operating point parameter
σ∗ and/or to the dendrite tip shape.

As discussed above, in the asymptotic limit that p,
γd → 0 the well-known result that σ∗(γd) ∝ γ

7/4
d is ob-

tained. A variety of other scaling laws in different asymp-
totic limits are reported in reference [20], including the
limit in which kinetic effects predominate over surface
energy, wherein R ∝ γ

−5/4
k , independent of the under-

cooling. The former of these limits is difficult to obtain
in the Wheeler formulation of the phase-field method as
convergence becomes very slow in the limit of small ∆.
However, the later limit is easier to obtain and has been
investigated here with γd ≡ 0. The condition for the dom-
inance of kinetics over surface energy is given Brener and
Mel’nikov [20] and with γd ≡ 0 can be written in our
notation as

β0V R

d0
�

(
1
γk

)1/2

. (22)

As shown in Figure 3, the dependence of R upon γk has
been studied at two values of ∆ and excellent agreement
with the asymptotic result is obtained. Moreover, the in-
dependence of R with changing ∆ is also apparent. For the
parameters used in this computation the estimated value
of β0V R/d0, measured at γk = 0.12, exceeds

√
(1/γk) by

a factor of ≈250 at ∆ = 0.34 and by ≈2000 at ∆ = 0.92,
which we take as satisfying equation (22).
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Fig. 3. Dendrite tip radius as a function of γk for pure kinetic
dendrites (γd = 0) for dimensionless undercoolings of ∆ = 0.34
and ∆ = 0.92. The least squares regression line shows that
there is excellent agreement with the scaling law derived from

solvability theory that R ∝ γ
−5/4
k with R independent of ∆.

In the case of isotropic isothermal growth the Ivantsov
solution predicts that the dendrite propagates as an ex-
act paraboloid of revolution. However, anisotropy not only
breaks the degeneracy in the Ivantsov solution but also
acts as a small perturbation to the shape of the dendrite
tip. Experimentally, there are a number of techniques for
parameterising the shapes of dendrites. In the tip region
the most appropriate method is to parameterise the tip as
either a low order polynomial [24]

z =
n∑

i=1

aix
i (23)

or as a power-law
z = α |x|β . (24)

Clearly, in the former case an exact parabola will result
in ai ≡ 0 for i �= 2, while in the later case a value of
β ≡ 2 will be obtained. Here we have used the power-law
expressed by equation (24) to parameterise the tip shape
as a function of γ in preference to the polynomial formu-
lation. There are two main reasons for this; firstly poly-
nomial fits introduce many additional fitting parameters
and secondly the value of the coefficients ai can depend
upon how far back from the dendrite tip the curve fitting
is extended [24]. Moreover, for growth in 3-dimensions the
physical meaning of the power-law fit parameters α and
β is known [25]. There are however physical differences
between 2- and 3-dimensional growth, primarily that the
in 2-dimensions the dendrite is a good approximation to
the Ivantsov parabola along its whole length while in 3-
dimensions this is only true near the tip, even in the limit
of low anisotropy. Due to these differences the meaning
of α and β is less clear in the 2-dimensional case, al-
though it is clear from the results presented below that

Fig. 4. Dendrite shape parameter, β, as a function of the di-
mensionless grouping σ* showing the same linear relationship
for pure capillary, pure kinetic and mixed capillary/kinetic den-
drites. All results generated at ∆ = 0.34.

β does vary in a systematic way with variations in the
anisotropy. This variation might also be reflected during
3-dimensional growth, although even if it is not the 2-D
results are themselves intrinsically interesting.

In order to study the tip shape as a function of γ the
co-ordinates of the dendrite tip (x, z), based on the φ = 0.5
contour, have been extracted up to 2R back from the tip.
The coefficient β has then been obtained by simple least-
squares fitting. We have looked at four systematic varia-
tions of γr and γi and their resultant effect on tip shape:

i. γr has been varied with γi fixed at zero, this corre-
sponds to the unmodified Wheeler model;

ii. γr and γi have been varied simultaneously in such a
way as to always give γk = 0, this corresponds to pure
capillary dendrites;

iii. γi has been varied with γr fixed at zero, this corre-
sponds to pure kinetic dendrites;

iv. γi has been varied with γr fixed at a non-zero value
(0.02), this corresponds to variation of the kinetic com-
ponent of the anisotropy with fixed but non-zero cap-
illary anisotropy. In this case the direction of γk has
been varied so that it both reinforces and opposes the
capillary anisotropy.

In presenting the results we have attempted to look for
some common scaling of β which is independent of the
exact combination of γr and γi. From Figure 4 it can be
seen that one way in which this can be achieved is by plot-
ting β against σ∗ = 2Ddo/R2V , wherein a linear trend is
observed which is independent of which combination of
anisotropies are used to obtain the value of σ*. In some
respects such a scaling may not appear surprising. As dis-
cussed above anisotropy provides a small correction to the
dendrite shape and consequently a scaling in which the
shape parameter β scales varies with σ* would seem quite
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reasonable. However, while σ* is a useful non-dimensional
grouping for capillary dendrites, it would normally be con-
sider far less meaningful for pure kinetic dendrites, pri-
marily because it is R that is constant with undercooling
not R2V . Despite this though it is clear that, at fixed un-
dercooling, a simple scaling between σ* and β exists for
pure capillary, pure kinetic and mixed capillary/kinetic
dendrites.

Summary and conclusions

We have presented above straightforward modification
to the Wheeler formulation of the phase-field model
that allows the magnitudes of the capillary and kinetic
anisotropies, γd and γk, to be decoupled. While there are
other formulations of the phase-field problem that also al-
low this independent variation of γd and γk many groups
around the World have adopted the Wheeler model and
new publications based on the application of this model
appear on a regular basis. The main advantage of the com-
putational modification proposed here is that it can be
very easily accommodated into existing implementations
of the Wheeler model, thus protecting the investment in
time of those researchers who have implemented and sub-
sequently developed and extended the Wheeler equations.
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